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Web Appendix A. Proof of Theorem 1

Proof. Consider the observed data functional

ψ =

∫
δ (x;h1) δ

D (x;h2) dF (x | S = t)

where

δ(X; s) =
δY (X; s)

δD(X; s)
.

To find the efficient influence function for ψ, we need to identify a random variable G with mean

zero that satisfies

∂ψτ

∂τ

∣∣∣∣
τ=0

= E{Gm(O; τ)}
∣∣
τ=0

where O = (X, Z,D, Y, S), m(O) = ∂ log f(O; τ)/ ∂τ |τ=0 is a score function and ψτ is the target

parameter under a regular parametric submodel indexed by τ . By the product rule,

∂ψτ

∂τ

∣∣∣∣
τ=0

=

∫
δ (x;h1) δ

D
τ (x;h2)

∂

∂τ
dFτ (x | S = t)

∣∣∣∣
τ=0

+

∫
δ (x;h1)

∂

∂τ
δDτ (x;h2)

∣∣∣∣
τ=0

dF (x | S = t)

+

∫
∂

∂τ
δτ (x;h1)

∣∣∣∣
τ=0

δD (x;h2) dF (x | S = t)

=(i) + (ii) + (iii).
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Turning first to (i),

(i) = E
{
δ (X;h1) δ

D (X;h2)m(X | S = t) | S = t
}

= E
{
I(S = t)δ (X;h1) δ

D (X;h2)m(X | S)
}
/κ

= E
(
I(S = t)δ (X;h1) δ

D (X;h2)
[
E{m(O) | X, S} − E{m(O) | S}

])
/κ

= E
[
I(S = t)

{
δ (X;h1) δ

D (X;h2)− ψ
}
m(O)

]
/κ.

Then,

(ii) = E

[
f(S = t | X)δ (X;h1)

∂

∂t
δDt (X;h2)

∣∣∣∣
t=0

]
/κ

= E

[
(2Z − 1)I (S = h2)

f
(
Z | X, S = h2

) f(S = t | X)

f
(
S = h2 | X

)δ (X;h1) {D − E(D | X, S, Z)}m(O)

]
/κ,

where we apply the following results obtained e.g. in the proof of Theorem 5 in Wang and Tchet-

gen Tchetgen (2018):

∂

∂τ
Eτ

(
D | X, S = h2, Z = z

)∣∣∣∣
τ=0

= E
[{
D − E

(
D | X, S = h2, Z = z,

)}
m

(
D,S = h2, Z = z | X

)]
,

∂

∂τ
δDτ (X;h2)

∣∣∣∣
τ=0

= E
[

(2Z − 1)

f(Z | X, S = h2)

I (S = h2)

f(S = h2 | X)
{D − E(D | X, S, Z)}m(O) | X

]
.

Finally, again applying results from Wang and Tchetgen Tchetgen (2018),

(iii) = E

f(S = t | X)


∂
∂τ δ

Y
τ (X;h1)

∣∣∣
τ=0

δD (X;h1)− ∂
∂τ δ

D
τ (X;h1)

∣∣∣
τ=0

δY (X;h1)

δD (X;h1)
2

 δD (X;h2)

 /κ
= E

[
(2Z − 1) I (S = h1)

f
(
Z | X, S = h1

) f
(
S = t | X

)
f
(
S = h1 | X

) δD (X;h2)

δD (X;h1)

×
[
{Y − E(Y | X, S, Z)} − {D − E(D | X, S, Z)}δ (X;h1)

]
m(O)

]
/κ

= E

[
(2Z − 1)I (S = h1)

f
(
Z | X, S = h1

) f(S = t | X)

f
(
S = h1 | X

) δD (X;h2)

δD (X;h1)

×
[
Y − µY0 (X;h1)−

{
D − µD0 (X;h1)

}
δ (X;h1)

]
m(O)

]
/κ

2



Therefore, the efficient influence function is equal to

1

κ

(2Z − 1)I (S = h1)

f
(
Z | X, S = h1

) f(S = t | X)

f
(
S = h1 | X

) δD (X;h2)

δD (X;h1)

[
Y − µY0 (X;h1)−

{
D − µD0 (X;h1)

}
δ (X;h1)

]
+

1

κ

(2Z − 1)I (S = h2)

f
(
Z | X, S = h2

) f(S = t | X)

f
(
S = h2 | X

)δ (X;h1)
{
D − µD0 (X;h2)− δD (X;h2)Z

}
+

1

κ
I(S = t)

{
δ (X;h1) δ

D (X;h2)− ψ
}

Web Appendix B: Partial identification of CATE(X;S = h1)

Partial identification of the conditional average treatment effect in a randomized trial with non-

compliance has been extensively discussed in the literature. Different partial identification intervals

exist under different identification assumptions. Two extreme cases are (1) bounds under minimal,

core IV assumptions and (2) point identification (i.e., a partial identification interval collapsing

to a point) under no-interaction-type assumptions. We have discussed in detail no-interaction-

type assumptions that permit point identification. Below, we provide a brief overview of partial

identification bounds under minimal IV assumptions for completeness.

B.1: Balke-Pearl bounds

For a binary outcome, if we assume that core IV assumptions hold within strata defined by observed

covariates X, then the conditional average treatment effect in the historical trial S = h1, i.e.,

E[Y (D = 0) | X;S = h1], is lower bounded by

max



p1,0|X,1

p1,0|X,S=h1,0

p1,0|X,S=h1,0 + p1,1|X,S=h1,0 − p0,0|X,S=h1,1 − p1,1|X,S=h1,1

p0,1|X,S=h1,0 + p1,0|X,S=h1,0 − p0,0|X,S=h1,1 − p0,1|X,S=h1,1


,
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and upper bounded by

min



1− p0,0|X,S=h1,1

1− p0,0|X,S=h1,0

p0,1|X,S=h1,0 + p1,0|X,S=h1,0 + p1,0|X,S=h1,1 + p1,1|X,S=h1,1

p1,0|X,S=h1,0 + p1,1|X,S=h1,0 + p0,1|X,S=h1,1 + p1,0|X,S=h1,1


.

Analogously, E[Y (D = 1) | X;S = h1] is lower bounded by

max



p1,1|X,S=h1,0

p1,1|X,S=h1,1

−p0,0|X,S=h1,0 − p0,1|X,S=h1,0 + p0,0|X,S=h1,1 − p1,1|X,S=h1,1

−p0,1|X,S=h1,0 − p1,0|X,S=h1,0 + p1,0|X,S=h1,1 + p1,1|X,S=h1,1


,

and upper bounded by

min



1− p0,1|X,S=h1,1

1− p0,1|X,S=h1,0

p0,0|X,S=h1,0 + p1,1|X,S=h1,0 + p1,0|X,S=h1,1 + p1,1|X,S=h1,1

p1,0|X,S=h1,0 + p1,1|X,S=h1,0 + p0,0|X,S=h1,1 + p1,1|X,S=h1,1


.

where py,d|X,S=h1,z is a shorthand for the conditional mean P (Y = y,D = d | X, S = h1, Z = z)

for Z ∈ {0, 1} and D ∈ {0, 1} in the historical dataset S = h1. All conditional means involved

above may be estimated via fitting parametric models, e.g., multinomial logistic regressions, or

using flexible machine learning methods. The bounds on the CATE(X;S = h1) = E[Y (D = 1) |

X;S = h1]− E[Y (D = 0) | X;S = h1] then follows from upper and lower bounds on E[Y (D = 1) |

X;S = h1] and E[Y (D = 0) | X;S = h1] (Balke and Pearl, 1997).
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B.2: Manski-Pepper bounds

For a bounded outcome, Manski (1990) derived the following “minimal-assumptions” partial iden-

tification bounds. Assume Y ∈ [K0,K1] almost surely. Note that

E[Y (D = 1) | Z = X, S = h1, 1]

= E[Y (D = 1) | D = 1, Z = X, S = h1, 1] · P (D = 1 | Z = X, S = h1, 1)

+ E[Y (D = 1) | D = 0, Z = X, S = h1, 1] · P (D = 0 | Z = X, S = h1, 1),

(1)

where E[Y (D = 1) | D = 1, Z = X, S = h1, 1] = E[Y | D = 1, Z = X, S = h1, 1] and P (D =

1 | Z = X, S = h1, 1) are both identified from observed data. The censored potential outcome

term E[Y (D = 1) | D = 0, Z = X, S = h1, 1] is not identified from data, but is bounded between

[K0,K1]. Therefore, we have the following “minimal-assumptions” bounds on E[Y (D = 1) | Z =

X, S = h1, 1]:

ψ(Z = 1, D = 1,X;K0, h1)

:= E[Y | D = 1, Z = X, S = h1, 1] · P (D = 1 | Z = X, S = h1, 1) +K0 · P (D = 0 | Z = X, S = h1, 1)

≤ E[Y (D = 1) | Z = X, S = h1, 1] ≤

ψ(Z = 1, D = 1,X;K1, h1)

:= E[Y | D = 1, Z = X, S = h1, 1] · P (D = 1 | Z = X, S = h1, 1) +K1 · P (D = 0 | Z = X, S = h1, 1).

(2)

We also have similar bounds on E[Y (D = 1) | Z = X, S = h1, 0]:

ψ(Z = 0, D = 1,X;K0, h1) ≤ E[Y (D = 1) | Z = X, S = h1, 0] ≤ ψ(Z = 0, D = 1,X;K1, h1). (3)
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Marginalizing over Z and we have the following “minimal-assumptions” bounds on E[Y (D = 1) |

X;S = h1]:

ψ(Z = 1, D = 1,X;K0, h1) · P (Z = 1 | X;S = h1) + ψ(Z = 0, D = 1,X;K0, h1) · P (Z = 0 | X;S = h1)

≤ E[Y (D = 1) | X;S = h1] ≤

ψ(Z = 1, D = 1,X;K1, h1) · P (Z = 1 | X;S = h1) + ψ(Z = 0, D = 1,X;K1, h1) · P (Z = 0 | X;S = h1).

(4)

The bounds on the other conditional potential outcome E[Y (D = 0) | X;S = h1] can be obtained

similarly by replacing D = 1 in each ψ(·) expression with D = 0.

B.3: Additional partial identification bounds

There is a wide spectrum between “minimal assumptions” bounds like Balke-Pearl bounds and

Manski-Pepper bounds, and point identification results in Wang and Tchetgen Tchetgen (2018).

Researchers may impose additional assumptions on the data-generating process and obtain bounds

that are considerably narrower compared to “minimal-assumptions” bounds. Some useful additional

assumptions and corresponding bounds for a bounded outcome include monotone instrumental

variable, monotone treatment selection, monotone treatment response, among many others (Manski

and Pepper, 2000).

Web Appendix C: Additional details on estimation

C.1: Variants of the regression-based estimator

There are multiple variants of the simple regression-based estimator. When two historical trials

collapse to one, i.e., h1 = h2, then ÎTT full, reg simplifies to:

ÎTT full, reg =
1

|D|

|D|∑
i=1

1{Si = t} × δ̂Y (Xi;h1), (5)

which is the same estimator one would obtain under the conditional constancy assumption (Zhang,

2009). In other words, the conditional constancy assumption is implied by Assumption 3 imposed

on the hypothetical placebo-controlled trial concerning the target population plus Assumption 3,
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Assumption 4, and Assumption 6 imposed on the historical trial S = h1.

When we have compliance data from the active-controlled trial (i.e., Dtarget = {(Xi, Zi, Di) : i =

1, . . . , N} as in the case study), then the term CCAC(X) is directly estimable from Dtarget. Indeed,

suppose we fit parametric models for µD,1(X, t) = E(D | Z = 1, S = t,X) and µD,0(X, h2) =

E(D | Z = 0, S = h1,X), from which we obtain estimates µ̂D,1(X, t) = E(D | Z = 1, S = t,X) and

µ̂D,0(X, h2) = E(D | Z = 0, S = h1,X). The regression-based estimator then becomes

ÎTT full, reg =
1

|D|

|D|∑
i=1

1{Si = t} ×

{
δ̂Y (Xi;h1)

δ̂D(Xi;h1)
×
{
µ̂D,1(Xi, t)− µ̂D,0(Xi;h2)

}}
, (6)

where the NI-trial-in-sample estimate µ̂D,1(X, t) now replaces µ̂D,1(X;h2). As described in the main

manuscript, if the parametric regression models postulated for δY (X;h1), δ
D(X;h1), µD,1(X, t)

and µD,0(X, h2) are correctly specified, with parameters estimated using standard likelihood or

M-estimation methods, then the resulting estimator is consistent and asymptotically normal under

standard regularity conditions.

Under point identification assumptions discussed in the main article, the conditional average

treatment CATE(X;h1) can also be estimated by directly imposing a parametric model δ(X;h1, α)

on δ(X;h1) := E[Y (D = 1) − Y (D = 0) | S = h1,X] and estimating the model parameters α by

the α̂ that solves the following estimating equation (Robins, 1994):

1

N1

N1∑
i=1

h(X){Yi −Diδ(X;α)} 2Zi − 1

f(Zi | X)
= 0,

where h(X) is any vector function of the same dimension as α, e.g., h(X) = X, and f(Zi | X) is a

known treatment assignment probability. δ(X; α̂) is then an estimator for CATE(X;h1) and can

be plugged directly into equation (5) in the main article. One advantage of this approach is that

by choosing an appropriate model for δ(X), one can ensure that the estimator δ(X; α̂) is in-sample

bounded; see for example the proposal of Wang and Tchetgen Tchetgen (2018). Okui et al. (2012)

and Tan (2006) discussed other ways to impose models to estimate CATE(X;h1).
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C.2: No crossover in the planned active-controlled trial

If the hypothetical placebo-controlled trial in the target population precludes crossover, i.e., Z = 0

implies D(Z) = 0, then the population consists of only compliers and never-takers (Frangakis and

Rubin, 1999, 2002). In this special case, the conditional intention-to-treat effect becomes:

E[Y (Z = 1)− Y (Z = 0) | X]

= E[Y (Z = 1)− Y (Z = 0) | D(1) = 1, D(0) = 0,X]︸ ︷︷ ︸
Term I

×P (D(1) = 1, D(0) = 0 | X)︸ ︷︷ ︸
Term II

+ E[Y (Z = 1)− Y (Z = 0) | D(1) = 0, D(0) = 0,X]︸ ︷︷ ︸
Term III

×P (D(1) = 0, D(0) = 0 | X)︸ ︷︷ ︸
Term IV

= E[Y (Z = 1)− Y (Z = 0) | D(1) = 1, D(0) = 0,X]× P (D(1) = 1, D(0) = 0 | X),

(7)

because Term III = 0 by definition. Term I is the average intention-to-treat effect in the sub-

population of compliers conditional on X, which is equal to the conditional complier average treat-

ment effect E[Y (D = 1)− Y (D = 0) | D(1) = 1, D(0) = 0,X].

Assumption 4’ is a variation of the mean generalizability assumption, and help identify Term I

using data from a selected historical trial.

Assumption 4’ (Mean generalizability among compliers). E[Y (D = 1) − Y (D = 0) | D(1) =

1, D(0) = 0,X] = E[Y (D = 1)− Y (D = 0) | D(1) = 1, D(0) = 0,X, S = h].

Term II characterizes the proportion of compliers conditional on X. Observe that:

P (D(1) = 1, D(0) = 0 | X) = P (D(1) = 1 | X)− P (D(1) = 1, D(0) = 1 | X)

= P (D = 1 | X, Z = 1),

(8)

where the first equality is by definition and the second equality is because we exclude always-takers

by assuming D(Z = 0) = 0. As discussed before, P (D = 1 | Z = 1,X) is identified from the

active-controlled trial when partial data {X, D, Z} is available, or can be inferred from a historical

trial under a one-arm compliance generalizability assumption analogous to Assumption 5. Using

previous notation, an estimate of ITT in the no-crossover setting is given by:

ÎTT no crossover, reg =
1

|D|

|D|∑
i=1

1{Si = t} ×

{
δ̂Y (Xi;h1)

δ̂D(Xi;h1)
× µ̂D,1(Xi)

}
. (9)
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C.3: Sensitivity analysis relaxing the no-interaction assumption

As summarized in Figure 1 in the main article, sensitivity analyses are useful to examine vari-

ous identification assumptions. Relaxing Assumption 4, 5, and 6 is straightforward: Researchers

may relax the equality constraint and allow CATE(X) and CC(X) to differ systematically from

their historical-data-identified counterparts CATE(X;h) and CC(X;h). Assumption 3 states that

there is no more common modifiers of the compliance behavior and treatment effect beyond those

contained in X. As a sensitivity analysis, one may consider the following parametrization that

relaxes Assumption 3. Let U denote unmeasured common effect modifiers. We scale U so that

E[U | X] = 0 and E[U2 | X] = 1. We consider the following parametrization

E[Y (D = 1)− Y (D = 0) | X, U ] = E[Y (D = 1)− Y (D = 0) | X] + λ1U,

E[D(Z = 1)−D(Z = 0) | X, U ] = E[D(Z = 1)−D(Z = 0) | X] + λ2U,

which holds, for instance, in the following semiparametric models for Y (D) and D(Z):

E[Y (D) | X, U ] = f1(X, U) + g1(X) ·D + λ1UD,

E[D(Z) | X, U ] = f2(X, U) + g2(X) ·D + λ2UD.

Under this parametrization, the true conditional intention-to-treat effect ITT (X) in the NI trial

admits the following simple decomposition:

ITT (X) = E[Y (D = 1)− Y (D = 0) | X]× E[D(Z = 1)−D(Z = 0) | X] + λ1λ2

= CATE(X)× CC(X) + λ1λ2.

(10)

Let Λ1×Λ2 denote a plausible sensitivity region for (λ1, λ2) and ÎTT (λ1, λ2) a bias-corrected ITT

estimate for (λ1, λ2) ∈ Λ1×Λ2. A level-α sensitivity interval may then be formed by taking a union

over all level-α confidence intervals of ÎTT (λ1, λ2) over the sensitivity region Λ1 × Λ2.
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Web Appendix D: Additional simulation details

D.1: Sampling distributions of 6 estimators in Scenario X1 and Scenario Y1

Figure S1: Sampling distributions of 6 intention-to-treat effect estimators ÎTT hypo, ÎTT const,1, ÎTT const,2,

ÎTT reg, par, ÎTTEIF, par, and ÎTTEIF, gam when N1 = N2 = N = 2000, observed covariates are generated
according to Scenario X1, and outcomes are generated according to Scenario Y1. Three levels of overlap (Poor,
Low, and Sufficient) are considered. Simulations are repeated 1000 times. The dashed red lines represent
the ground truth intention-to-treat effects in each setting.
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D.2: Additional simulation results

Figure S2 shows the sampling distributions of ÎTT hypo, ÎTT const,1, ÎTT const,2, ÎTT reg, par, and

ÎTTEIF, gam, when N1 = N2 = N = 2000, observed covariates were generated according to Scenario

X2 and outcomes were generated according to Scenario Y2. Table S1 summarizes the percentage

of bias and the coverage of 95% confidence intervals for different choices of sample size and the

overlap parameter c. We still truncate the estimator ÎTTEIF, gam to be bounded in [−1, 1] by

letting the estimator be ϕ(ÎTTEIF, gam) where function ϕ(x) = 1, ∀x ≥ 1, ϕ(x) = −1, ∀x ≤ −1,

and ϕ(x) = x otherwise. The ground truth intention-to-treat effects are superimposed using red

dashed lines. The historical-data-driven estimator ÎTTEIF, gam closely resembles the ground truth

ITTs but has a larger variance compared to that of ÎTT hypo. However, ÎTT reg, par is biased when

the overlap parameter c ∈ {0.25, 0.50} because we still fit linear parametric models for CATE(X)

and CC(X) which are not correctly specified in this data generation setting. Besides, the two

estimators ÎTT const,1 and ÎTT const,2 based on an incorrect assumption of conditional constancy

were significantly biased, and their confidence intervals did not have the nominal level of coverage.

ÎTT hypo ÎTT const, 1 ÎTT const, 2 ÎTT reg, par ÎTTEIF, gam

Sample
size

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

c = 0
1000 -0.1 95.6% -18.7 70.9% 76.2 0.0% 0.4 95.3% 1.3 94.5%
2000 0.1 96.2% -18.8 49.6% 76.6 0.0% -0.1 94.2% 1.1 94.3%
5000 0.1 95.3% -19.0 13.4% 76.0 0.0% -0.6 94.0% 0.5 95.3%

c = 0.25
1000 0.6 96.5% -19.8 62.6% 68.2 0.0% 7.1 93.3% -0.5 95.9%
2000 0.2 95.2% -19.4 40.9% 69.0 0.0% 8.0 89.3% 2.1 95.5%
5000 -0.1 96.3% -19.7 4.5% 68.6 0.0% 7.8 82.2% 2.2 94.8%

c = 0.5
1000 0.2 95.7% -21.6 53.7% 56.9 0.0% 18.0 77.3% 2.1 94.4%
2000 -0.4 95.5% -22.1 21.0% 57.7 0.0% 17.6 62.6% 0.8 93.2%
5000 0.2 94.8% -21.6 1.3% 57.4 0.0% 17.5 29.1% 1.0 94.8%

Table S1: Simulation results of 5 estimators for various sample size and choice of the overlap parameter c
when the observed covariates were generated according to Scenario X2 and outcomes were generated accord-
ing to Scenario Y2. The percentage of bias and coverage of 95% confidence intervals are reported. Confidence
intervals of ÎTTEIF, gam were estimated based on the asymptotic normality and the efficient influence func-

tion. Confidence intervals of ÎTT hypo were based on two-sample tests. Confidence intervals of the other 3

estimators were obtained via the nonparametric bootstrap. Out of 1000 simulations, ÎTTEIF, gam fell outside
[−1, 1] a total of 13, 5 and 8 times when c = 0, 0.25 and 0.5, respectively, when n = 1000, 6, 3 and 4 times
when c = 0, 0.25 and 0.5, respectively, when n = 2000, and 4, 3 and 2 times when c = 0, 0.25 and 0.5,
respectively, when n = 5000.
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Figure S2: Sampling distributions of 5 intention-to-treat effect estimators ÎTT hypo, ÎTT const,1, ÎTT const,2,

ÎTT reg, par, and ÎTTEIF, gam when N1 = N2 = N = 2000, different choices of the overlap parameter c
and observed covariates were generated according to Scenario X2 and outcomes were generated according to
Scenario Y2. Simulations are repeated 1000 times. The dashed red lines represent the ground truth intention-
to-treat effects in each setting. ÎTTEIF, par is not included because it has to be biased as we estimate EIFs
by fitting linear parameter models which are not correctly specified.

Figure S3 shows the sampling distributions of ÎTT hypo, ÎTT const,1, ÎTT const,2, ÎTT reg, par, and

ÎTTEIF, gam, when N1 = N2 = N = 2000, observed covariates were generated according to Scenario

X2 and outcomes were generated according to Scenario Y1. Table S2 summarizes the percentage

of bias and the coverage of 95% confidence intervals for different choices of sample size and the

overlap parameter c.
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Figure S3: Sampling distributions of 6 intention-to-treat effect estimators ÎTT hypo, ÎTT const,1, ÎTT const,2,

ÎTT reg, par, and ÎTTEIF, gam in Scenario X2 when N1 = N2 = N = 2000, different choices of the overlap
parameter c, and observed covariates were generated according to Scenario X2 and outcomes were generated
according to Scenario Y1. Simulations are repeated 1000 times. The dashed red lines represent the ground
truth intention-to-treat effects in each setting.
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ÎTT hypo ÎTT const, 1 ÎTT const, 2 ÎTT reg, par ÎTTEIF, gam

Sample
size

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

%
Bias

95% CI

Coverage

c = 0
1000 0.0 95.9% -19.1 70.7% 75.9 0.0% -0.7 94.7% -1.4 95.6%
2000 -1.0 94.9% -18.6 51.7% 75.2 0.0% -0.1 95.0% -1.3 94.8%
5000 -0.4 94.5% -18.8 14.7% 74.9 0.0% -0.3 95.2% 0.8 95.4%

c = 0.25
1000 -0.1 94.8% -19.4 70.7% 77.7 0.0% 2.7 94.3% -0.8 94.7%
2000 -0.2 94.8% -19.1 46.8% 77.8 0.0% 3.3 94.3% 1.9 95.2%
5000 -0.2 94.8% -19.4 9.3% 77.7 0.0% 3.0 92.7% -0.1 94.5%

c = 0.5
1000 -0.4 95.0% -19.8 68.3% 80.0 0.0% 7.6 92.7% -0.4 94.9%
2000 -0.4 96.0% -20.0 44.3% 79.9 0.0% 6.9 91.8% 1.4 95.3%
5000 -0.2 95.7% -19.5 10.3% 80.1 0.0% 7.1 86.1% -0.2 94.4%

Table S2: Simulation results of 5 estimators for various sample sizes and choice of the overlap parame-
ter c when the observed covariates were generated according to Scenario X2 and outcomes were generated
according to Scenario Y1. The percentage of bias and coverage of 95% confidence intervals are reported.
Confidence intervals of ÎTTEIF, gam were estimated based on the asymptotic normality and the efficient

influence function. Confidence intervals of ÎTT hypo were based on two-sample tests. Confidence intervals of

the other 4 estimators were obtained via the nonparametric bootstrap. Out of 1000 simulations, ÎTTEIF, gam

fell outside [−1, 1] (considered outliers) a total of 14, 11 and 9 times when c = 0, 0.25 and 0.5, respectively,
when n = 1000, 7, 6 and 5 times when c = 0, 0.25 and 0.5, respectively, when n = 2000, and 3, 3 and 0
times when c = 0, 0.25 and 0.5, respectively, when n = 5000.
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Web Appendix E: Additional details on real data

E.1: Kaplan-Meier estimates in HPTN 084
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Figure S4: Kaplan-Meier estimates of incident HIV acquisition in the HPTN 084 trial population
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E.2: A summary of 5 historical trials

Table S3: Year, target population, locations, and relative risk of five major placebo-controlled trials of daily
oral TDF/FTC against placebo (Cohen and Baden, 2012). † The heterosexual men and women are in HIV
discordant partnerships

Trial (year)
Target

population
Locations

Relative risk
(placebo vs.
TDF/FTC)
[95% CI]

iPrEx (2010)
Men who have
sex with men

Brazil, Ecuador, Peru, South
Africa, Thailand, and U.S.

1.79
[1.20, 2.67]

Partners PrEP (2012)
Heterosexual

men and women†
Kenya and Uganda

4.00
[2.19, 7.32]

TDF2 (2012)
Heterosexual

men and women
Botswana

2.68
[1.26, 5.73]

FEM-PrEP (2012) Young women
Kenya, South Africa,

and Tanzania
1.05

[0.66, 1.68]

VOICE (2015) Women
South Africa, Uganda,

and Zimbabwe
0.97

[0.69, 1.37]
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E.3: Overlap of HPTN 084 and Partners PrEP
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Figure S5: The probability of sample selection which is the probability of a participant to be in the
HPTN 084 - Target Population given the covariates.
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